REPORT ON

GEOTECHNICAL INVESTIGATIONS

FOR THE PROPOSED

High School at Pacharha, Block - Hisua Dist. Nawada

Your Letter No.- BSEIDC/TECH/1960/2018-1369 Dated - 02.03.2021 [Sl. No. 3]

Submitted to The Chief Engineer BSEIDC, Patna

August, 2021

BIHAR FOUNDATION CONSULTANTS

[A unit of Baidyanath Foundation Consultants Pvt. Ltd.] Ganga Darshan Apartment, Flat No. 403.

Patna - 10

[e-mail: bifcon.pat@gmail.com, Phone No: + 91612 - 2272826]

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.]

PN -210729

CONTENTS

Sl.No.	<u>Description</u>	Page No.
1	Introduction	1
2	Field Work	1
3	Laboratory Test	2
4	Presentation of Test Results	2
5	Soil Stratification	2
6	Foundation Analysis	2
7	Recommendations	3-4

Appendix

[Containing Figures and Tables]

- A. Bore Holes Location Map
- B. Field Test Observations & Laboratory Test Results
- C. Graph of Grain size Analysis
- D. Triaxial shear / Direct shear strength test curves
- E. `e-log p' Curves from Consolidation Tests
- F. Sample calculation of pile
- G. Copy of Work Oder

Report on Sub Soil Investigations for the Proposed High School at Pacharha, Block - Hisua, Dist. Nawada

1. INTRODUCTION

The subsoil investigations reported herein were taken up (vide W.O. No. BSEIDC/Tech/1960/2018-1369 Dated – 02.03.2021 [Serial No. 3]

to find out the nature of subsoil at the site of the proposed construction and to recommend the capacity and type of its foundation. After certain tests on the soil, as detailed below, the desired recommendations have been made on page 3-4 of this Report.

2. FIELD WORK

The fieldwork consisted of sinking bore holes, collecting soil samples and conducting the necessary field tests.

2.1. Boring

Taking guidance from IS: 1892, 150 mm diameter bore holes were sunk at locations shown in the bore hole location map.

2.2 Sampling

2.2.1 Undisturbed Soil Samples

Open drive samplers of 100-mm diameter and about 450-mm length were used for obtaining undisturbed samples of cohesive soils. The collection, sealing, labeling and transportation of the samples to the laboratory were done as per the IS guide-lines.

2.2.2 Disturbed Soil Samples

Disturbed soil samples were collected at suitable intervals of depth (not more than 2.5 m) and at all depths of change in the nature of the subsoil. These samples were sealed in polythene bags with proper identification labels.

2.3 Field Tests

2.3.1 Standard Penetration Tests (SPT)

These tests were conducted as per IS: 2131 – 1963. The depth interval between two consecutive tests was 1 to 1.5 m. The tests were located in between the levels at which undisturbed soil samples were collected.

Report on Sub Soil Investigations for the Proposed High School at Pacharha, Block - Hisua, Dist. Nawada

3. LABORATORY TESTS

Some or all of the following laboratory tests, as necessary, were done on the collected soil samples. Representative soil samples were selected for this from the different soil strata encountered during boring. The tests were performed as per the relevant Indian Standard Codes of Practice.

- (a) Natural moisture content
- (b) Bulk density
- (c) Grain size analysis (using sieves and / or hydrometer)
- (d) Specific gravity of soil solids
- (e) Atterberg's limit tests (liquid, plastic and shrinkage limits)
- (f) Shear Tests:
 - [I] Triaxial compression test (unconsolidated undrained), generally for fine- grained soils
 - [II] Unconfined compression tests, only on cohesive soils
 - [III] Direct shear tests, generally for coarse-grained soils
- (g) Other tests as and when required.

4. PRESENTATION OF TEST RESULTS

The field and laboratory test are given in the **Appendix B**.

5. SOIL STRATIFICATION

The results of field tests in three bore hole sunk at the site [vide Location Sketch in App. A] and the results of laboratory tests conducted on the collected soil samples indicate that the soil stratification at the site is as describe below.

The sub soil in all 3 BH's is silty clay / sandy silty clay [type CI] up to the investigated depth of 10.5 m bgl. It is also gritty below 4.5 m depth.

Ground water table was struck at about 1.50 m to 1.80 m depth below GL in August, 2021. It is subject to seasonal variations.

6. FOUNDATION ANALYSIS

The safe capacity of foundation of any type and size may be determined on the basis of the soil data given in this Report by using the standard methods of foundation design and following the relevant Indian Standard Codes.

7. RECOMMENDATIONS

The design of the foundation for the proposed structure depends on the nature of both [a] the subsoil and [b] the structure.

The sub soil in all 3 BH's is silty clay / sandy silty clay [type CI] up to the investigated depth of 10.5 m bgl. It is also gritty below 4.5 m depth.

Ground water table was struck at about 1.50 m to 1.80 m depth below GL in August, 2021. It is subject to seasonal variations.

Hence,

- 1. The subsoil up to about 2 m in all 3 BH's is soft. Hence the proposed structure may be provided with shallow foundation at a depth of 2.0 m or more.
- 2. Alternatively, U/R piles of lengths 4.0 m to 10.0 m may be used with stem diameters of 0.25 m, 0.30 m, 0.40 m and 0.50* m and bulb diameters equal to 2 times the stem diameter.

*However 0.5 m stem diameter shall be used for U/R piles of lengths 6 m or more

By way of example, the values of safe capacities of

(1) Shallow foundations and (2) Single or double bulbed u/r piles of the above mentioned sizes and depths have been calculated (vide Samples of Calculations in Appendix F) and are tabulated below.

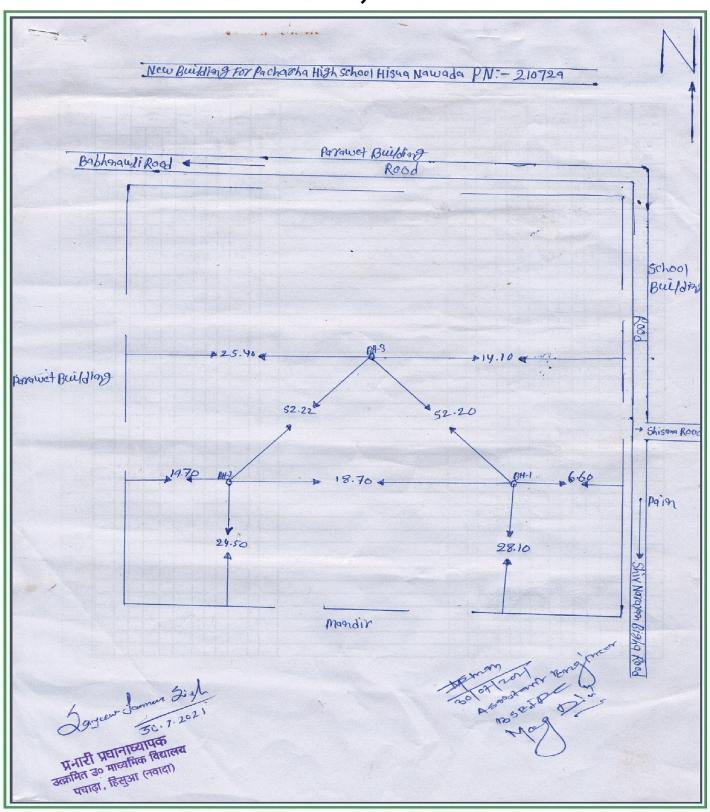
Table 1: Allowable Net Bearing Pressures [qna] and Settlements Expected [s]

Depth (m)	Width (m)	Net allowa	able bearing pressure	(t/m²) for	Maximum expected
Deptir (iii)	Width (iii)	Strip footing	Square footing	Raft footing	settlement (mm)
	2.0	4.4	5.2		75
2.0	3.0	4.2	4.9		75
	10.0			4.7	100
	2.0	5.4	6.5		75
2.5	3.0	5.1	6.1		75
	10.0			5.6	100
	2.0	6.6	7.9		75
3.0	3.0	6.1	7.3		75
	10.0	//		6.6	100
	2.0	8.9	10.6		75
3.5	3.0	7.7	9.7		75
	10.0			8.5	100
	2.0	11.4	13.7		75
4.0	3.0	8.5	12.4		75
	10.0			9.0	100
	2.0	14.5	17.6		75
4.5	3.0	9.2	15.9		75
	10.0			9.5	100

Table 2. Safe Capacities of U/R Piles [Factor of safety = 2.5]

[Bulb diameter = 2.0 times the shaft diameter]

Pile length	(suk	oj ect t		Pile Cap cking f		onnes] ender n	ess r a	tio*)
below pile			Ste	em diai	meter ((m)		
Cap (m)	0.	25	0.	30	0.	40	0.	50
	One bulb	Two bulbs	One bulb	Two bulbs	One bulb	Two bulbs	One bulb	Two bulbs
4.0	3.4	4.0	4.7	5.6	7.9	9.5		
6.0	5.6	6.7	7.6	9.2	12.4	15.2	18.3	22.7
8.0	8.5	10.1	11.2	13.6	17.7	21.9	25.6	32.1
10.0	10.9	12.9	14.3	17.2	22.2	27.3	31.7	39.7

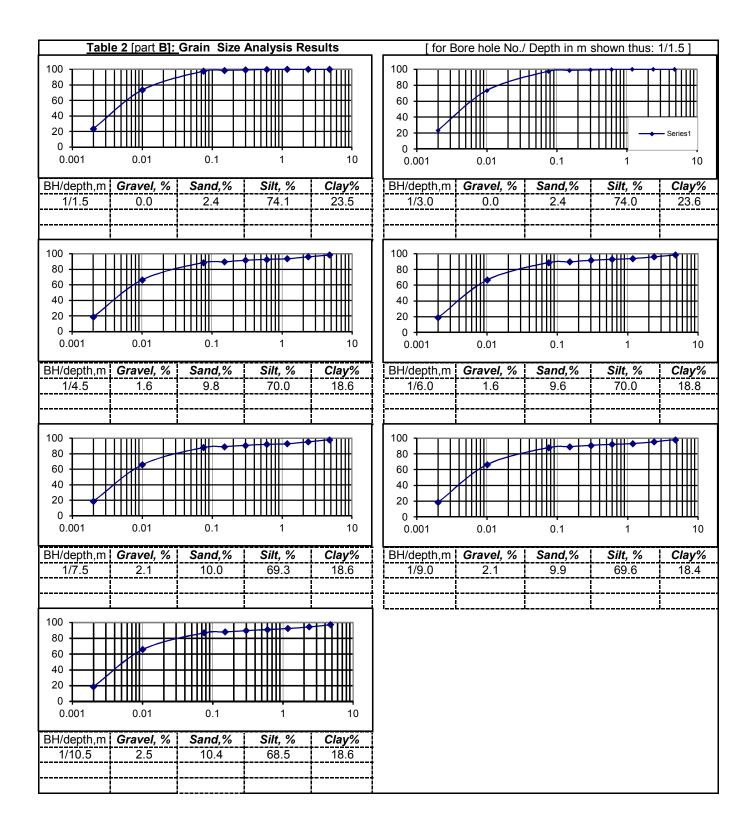

^{*}For a preliminary checking of the slenderness ratio, the modulus of subgrade reaction (k) may be estimated from the following empirical relation given in IS: 2950-1981 (Second Revision) Table 1. $k (kN/m^3) = 240 c$, where $c (kN/m^2)$ is the value of cohesion of the soil at the concerned depth.

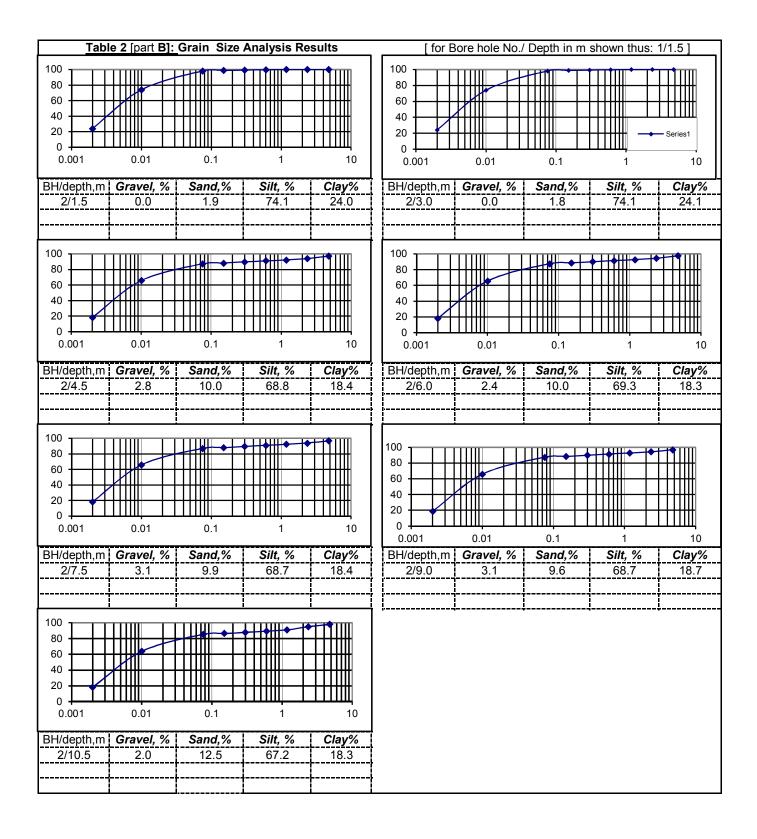
Notes:

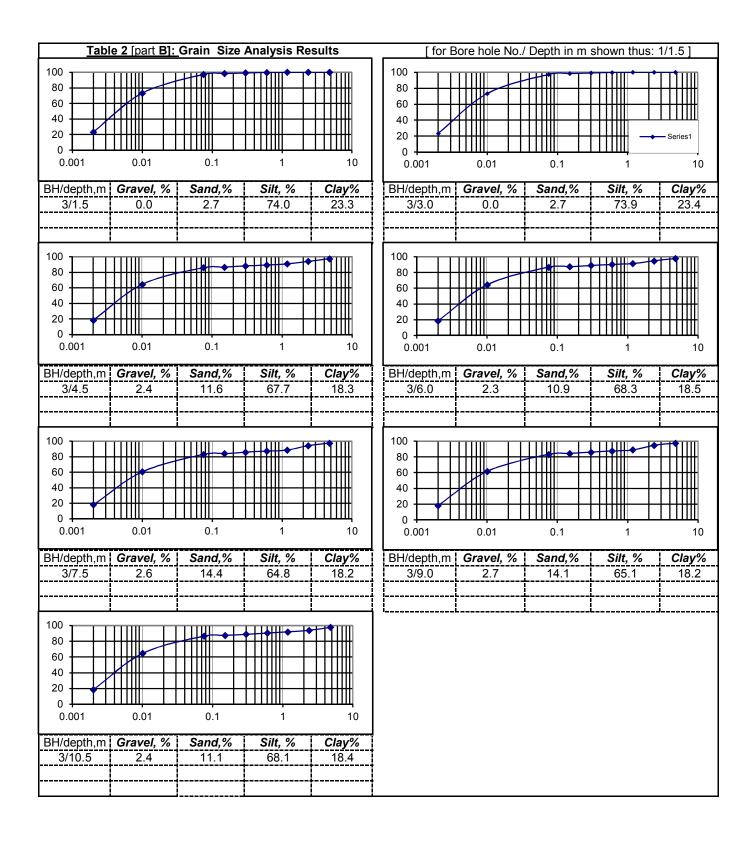
- 1. If a subsoil condition much different from those reported herein is met with during foundation trenching or piling, suitable steps should be taken.
- 2. If concreting of piles is to be done below water table, DMC and tremie method should be adopted.
- 3. If u/r piles are provided, care should be taken to ensure proper formation of bulbs.
- 4. Shallow foundations or pile caps should be isolated from the surrounding expansive soil by layers of compacted local sand.
- 5. As per the provisions of the IS Code, an appropriate number of piles must be subjected to routine load tests to check the veracity of the above recommended values of the safe capacities of piles.

For Bihar Foundation Consultants

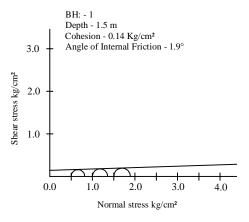
(Prof. C.N. Sinha, Dr.-Ing., FIE) Chief Consultant.

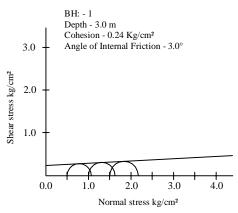


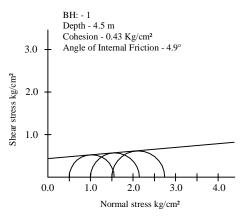

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit: Baidyanath Foundation Consultants Pvt. Ltd.]

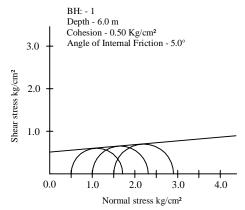

NAME O	F WORK	: Sub soil In	vestigation for C/O				BORING	FINISH D	ATE : 29.	07.2021		WATER	TABLE	: 1.50 m b	gl	
High So	hool at I	Pacharha, B	lock - Hisua, Dist. Nawada				BORING	METHOD	: Rotary							
BORE H	OLE NO. :	1	Site Incharge - Mukesh Singh				TERMINA	ATION DE	PTH:10.	5 m		RECORD	ON	: 29.07.	2021	
iL (m)		SPT 'N' Value		Dept	:h(m)				%":	Jm/cm3)	re Content	>		Shear Te		ndex (${ m C_c}$)
Depth Below GL (m)	Sample No.	observation	Visual Description of Soil with IS Classification		· ,	Thickness (m)	Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	Natural Moisture ((%)	Specific Gravity	Type of Test	Cohesion, c (kg/cm2)	Friction Angle, φ °	Compression Index (C _c)
Dep	San	Obsr.		from	to	Thic	Liqu	Plas	Plas	Bulk	Nat (%)	Spe	Тур	Cot kg/c	Fric	Cor
1.0				0.0												
1.5	S1	3	Greyish silty clay, Cl			3.0	47.3	25.1	22.2	1.94	29.9	2.71		0.14	1.9	
2.5			Greyion only day, or			0.0										
3.0	S2	5			3.0					1.95	29.4	2.71		0.24	3.0	0.156
4.0			Dark greyish sandy silty clay, Cl	3.0		1.5										
4.5	S3	9	Daik greyisii sariuy siity ciay, Ci		4.5	1.5	47.0	23.7	23.3	1.99	26.7	2.71		0.43	4.9	0.143
5.5				4.5												
6.0	S4	11								2.01	25.5	2.71		0.50	5.0	
7.0																
7.5	S5	15	Greyish yellowish sandy silty clay, Cl			6.0	43.9	13.2	30.7	2.01	25.4	2.71		0.62	5.1	
8.5			with grits			0.0										
9.0	S6	18								2.02	24.8	2.71		0.68	5.1	
10.0																
10.5	S7	21			10.5					2.03	24.3	2.71		0.74	5.2	

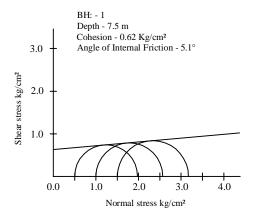
NAME O	F WORK	: Sub soil In	vestigation for C/O				BORING	FINISH D	ATE : 30.	07.2021		WATER	TABLE	: 1.60 m b	gl	
High So	hool at I	Pacharha, B	lock - Hisua, Dist. Nawada				BORING	METHOD	: Rotary							
BORE H	OLE NO. :	2	Site Incharge - Mukesh Singh				TERMINA	ATION DE	PTH:10.	5 m		RECORD	ON	: 30.07.	2021	
GL (m)		SPT 'N' Value	Visual Description of Sail with IS Classification	Dept	:h(m)				%,%	gm/cm3)	ure Content	t y		Shear Te		Compression Index (C _c)
Depth Below GL (m)	Sample No.	observation	Visual Description of Soil with IS Classification			Thickness (m)	Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	Natural Moisture ((%)	Specific Gravity	Type of Test	Cohesion, c kg/cm2)	Friction Angle, φ °	npression
Dek	Sar	Obsr.		from	to	Thi	Liq	Pla	Pla	Bull	Nat (%)	Spe	Тур	Cot kg/c	Fric	Cor
1.0				0.0												
1.5	S1	4	Greyish silty clay, Cl			3.0				1.94	29.8	2.71		0.19	2.5	
2.5			Greyish sitty day, or			0.0										
3.0	S2	6			3.0		40.0	24.6	15.4	1.96	28.6	2.70		0.30	3.6	
4.0			Dark greyish sandy silty clay, Cl	3.0		1.5										
4.5	S3	10	Dark greyish sahuy shiy clay, Ci		4.5	1.5				2.00	26.7	2.71		0.47	5.0	
5.5				4.5												
6.0	S4	13					44.5	25.1	19.4	2.01	25.4	2.71		0.58	5.1	
7.0																
7.5	S5	15	Greyish yellowish sandy silty clay, Cl			6.0				2.01	25.4	2.71		0.62	5.1	
8.5			with grits			0.0										
9.0	S6	19					44.4	24.6	19.8	2.02	24.7	2.71		0.70	5.2	
10.0																
10.5	S7	22			10.5					2.03	24.3	2.71		0.76	5.2	

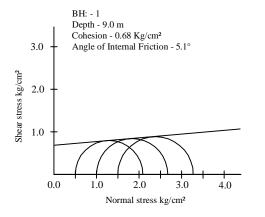

NAME O	F WORK	: Sub soil In	vestigation for C/O				BORING	FINISH D	ATE : 30.	07.2021		WATER	TABLE	: 1.80 m b	gl	
High Sc	hool at I	Pacharha, B	lock - Hisua, Dist. Nawada				BORING	METHOD	: Rotary							
BORE H	OLE NO. :	3	Site Incharge - Mukesh Singh				TERMINA	ATION DE	PTH:10.	5 m		RECORD	ON	: 30.07.	2021	
iL (m)		SPT 'N' Value		Dept	th(m)				%":	Jm/cm3)	re Content	>		Shear Te		ndex (${ m C_c}$)
Depth Below GL (m)	Sample No.	observation	Visual Description of Soil with IS Classification			Thickness (m)	Liquid Limit	Plastic Limit	Plasticity Indix,%	Bulk Density (gm/cm3)	Natural Moisture ((%)	Specific Gravity	Type of Test	Cohesion, c kg/cm2)	Friction Angle, φ °	Compression Index (C _c)
Dep	Sar	Obsr.		from	to	Thic	Liqu	Pla	Plas	Bull	Nat (%)	Spe	Тур	Kg/c	Fric	Cor
1.0				0.0												
1.5	S1	4	Greyish silty clay, Cl			3.0	44.4	25.4	19.0	1.94	29.8	2.71		0.19	2.4	
2.5			Greyion only day, or			0.0										
3.0	S2	7			3.0					1.97	28.0	2.71		0.34	4.0	0.151
4.0			Dark greyish sandy silty clay, Cl	3.0		1.5										
4.5	S3	9	Daik greyisii sariuy siity ciay, Ci		4.5	1.5	44.5	22.9	21.6	1.99	26.7	2.71		0.43	4.9	
5.5				4.5												
6.0	S4	11								2.01	25.5	2.71		0.50	5.0	
7.0																
7.5	S5	14	Greyish yellowish sandy silty clay, Cl			6.0				2.01	25.4	2.71		0.60	5.1	
8.5			with grits			0.0										
9.0	S6	16								2.02	24.8	2.71		0.64	5.1	
10.0																
10.5	S7	23			10.5		43.8	23.7	20.1	2.03	24.3	2.71		0.78	5.2	

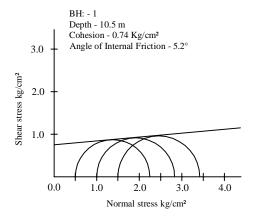







TRIAXIAL / DIRECT SHEAR TEST PLOTS

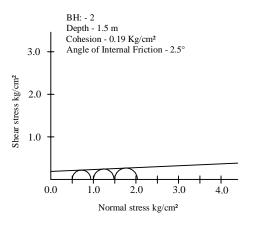


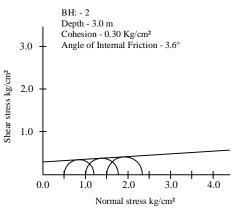


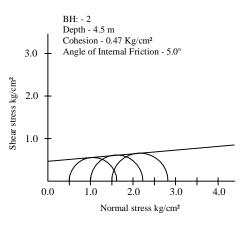
[

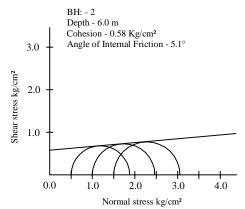
Appendix

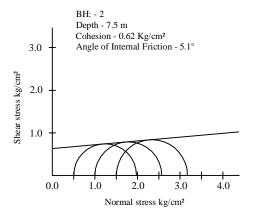
D1

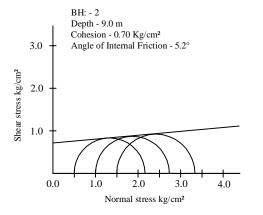

Bihar Foundation Consultants, [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

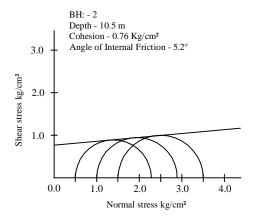

For the Proposed


High School at Pacharha, Block - Hisua, Dist. Nawada

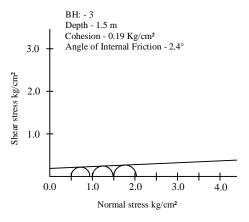

Project No. 210729

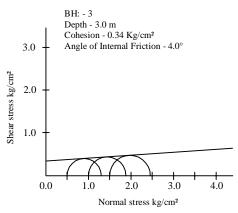

TRIAXIAL / DIRECT SHEAR TEST PLOTS

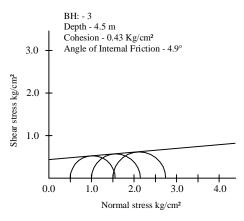


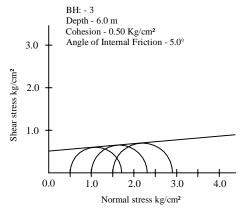


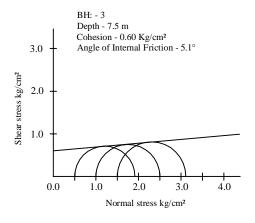
Bihar Foundation Consultants, [A unit of Baidyanath Foundation Consultants Pvt. Ltd.]

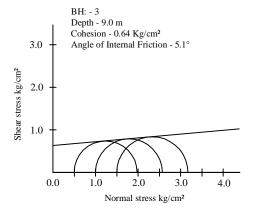

For the Proposed

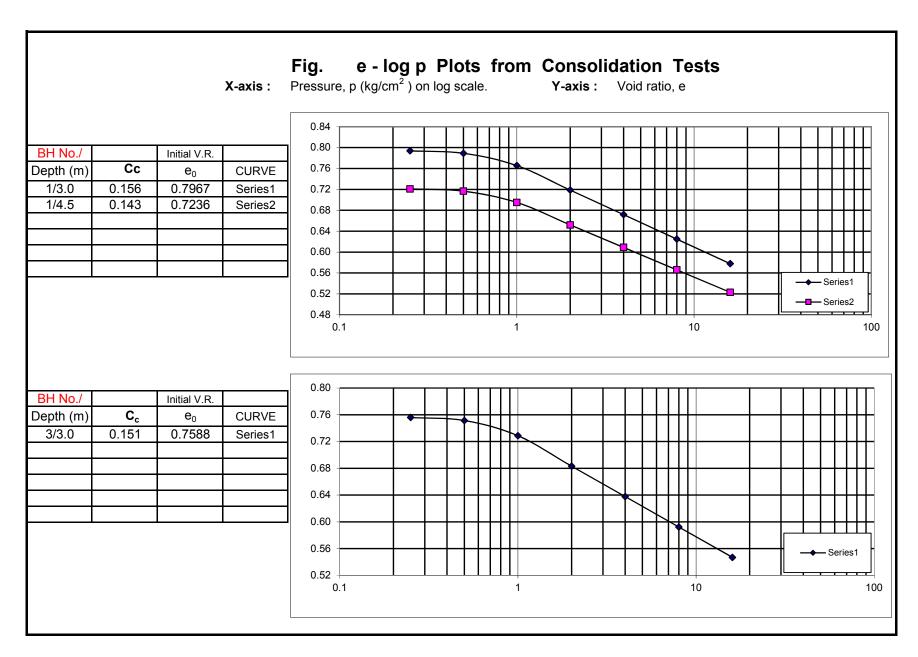

High School at Pacharha, Block - Hisua, Dist. Nawada


Appendix - D2


Project No. 210729


TRIAXIAL / DIRECT SHEAR TEST PLOTS




Appendix

D3

Bihar Foundation Consultants, [A unit of Baidyanath Foundation Consultants Pvt. Ltd.] For the Proposed

High School at Pacharha, Block - Hisua, Dist. Nawada

Project No. 210729

SAMPLE CALCULATION OF BEARING CAPACITY OF SHALLOW FOUNDATION

The determination of the **net safe bearing capacity**, \mathbf{q}_{ns} , is done on the basis of the shear failure criterion after dividing the value of the **net ultimate bearing capacity** \mathbf{q}_{nf} , calculated as described below, by a suitable factor of safety. The **net soil pressure**, \mathbf{q}_s , for a given permissible settlement is then calculated as explained in the next section. The lower of the two values, \mathbf{q}_{ns} and \mathbf{q}_s , thus determined is taken as the **allowable bearing capacity** of the soil.

1. Shear Failure Criterion:

The **net ultimate bearing capacity** \mathbf{q}_{nf} (t/m²) of a shallow foundation of breadth B (m) and depth D (m) is given as per IS:6403-1981 (Sec.5.1.2) by the following equation :

The bearing capacity factors (N's) are functions of ϕ , the angle of internal friction of the soil. The values of these factors are found for general shear failure by referring to standard tables. If subsoil conditions are such as to lead to local shear failure, the values of these factors are found for a reduced value of angle of internal friction (ϕ ') given by the equation: tan ϕ ' = 0.67 tan ϕ . The value of cohesion is also reduced to c' = 0.67 c.

The values of the other factors in the above equation for usual conditions are as tabulated below:

	THE THIRD OF THE O	ner ractors in the assist equation for assum	
sc =	1.3 1+0.2B/L 1	$d_c = 1 + 0.2 (Nf)^{0.5} D/B$	D _w at G.L. Fou'dn.Level
s _q =	1.2 1+0.2B/L 1	$d_q = d_{\gamma} = 1$ for $f < 10$	w = 0.5
s _g =	0.8//0.6 1-0.4B/L 1	$d_q = d_{\gamma} = 1 + 0.1 (Nf)^{0.5} D/B$ f > 10	o Interpolation between
FOR	sq.// O Rect. STF	$P \mid I_c, I_a, I_{\gamma} = 1$ for vertical load	these values is linear.

In the present case, the representative values of cohesion \mathbb{O} and angle of internal friction (ϕ) may be obtained from the soil data given earlier. Full submergence of the soil has been assumed. The **safe bearing capacity**, \mathbf{q}_{ns} has been obtained by dividing \mathbf{q}_{nf} by a **safety factor**, 3.

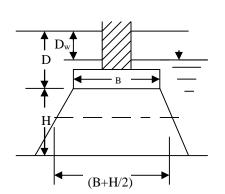
One example of calculation of safe bearing capacity for a certain shape, depth and width of a footing is given in **Table A** on the next page. The net safe bearing capacity for the footing is entered in the last column of Table A. Calculations for other depths and widths of footings are done similarly.

The value of net safe bearing capacity (q_{ns}) calculated for each set of values of B and D is used for calculating the consolidation settlement s as explained in Sec. 2 below.

2. Settlement Criterion for Foundation on cohesive soil.

As per IS:8009(Part I)-1976, Sec. 9.2.2.2, the settlement s (in mm) is given by the equation:

$$s = \begin{tabular}{ll} $s = [1000~H~C_c~log~(1+\Delta p/~p_o~)]/(1+e_o~)~\lambda$ where & $H = $thickness~(in~m)$ of the compressible layer \\ $C_c = $compression index of the soil$ \\ $e_o = $initial~void~ratio~at~mid-height~of~compressible~soil~layer = its~m/c~(~m)~x~sp.~Gravity \\ $p_o = $initial~effective~pressure~at~mid-height~of~the~layer~(t/m^2~)$ \\ $\Delta p = $pressure~increment~at~the~mid-height~of~the~layer~due~to~the~foundation~(t/m^2~).$ \\ $\lambda = $correction~factor$ \end{tabular}$$


Report on Sub Soil Investigations for the proposed High School at Pacharha, Block - Hisua, Dist. Nawada

If there are different layers with different compression indices and void ratios, s is calculated for each one of these and then added together to get the settlement.

The pressure increment at any plane due to the footing load may be calculated by assuming the dispersion of load at a slope of 1 horizontal to 2 vertical. Hence the load applied over a width B of a foundation (vide the Fig. below) is spread at a depth H/2 below it over a width (B + H/2).

A correction factor $\lambda=0.80$ is used as per IS Code to find the corrected settlement. If this value of corrected s is within the permissible limit specified in the Code, the corresponding value of q_{ns} is also the net allowable bearing capacity q_{na} . If not, trials give the desirued value of q_{na} . One example of this settlement analysis is given below the **Table B** in Sec. 3.

If $D_w > (D+1.5 \text{ B/2})$, $p_0 = g (D+1.5 \text{ B/2}) \text{ t/m}^2$, otherwise, $p_0 = g D_w + (g-1) (D-D_w + H/2) \text{ t/m}^2$

 $D_w = {\sf depth} \ {\sf of} \ {\sf water} \ {\sf table} \ {\sf below} \ \ {\sf ground} \ {\sf level} \ .$

D = depth of foundation

B = breadth of foundation

H = 1.5 x B = thickness of compressible soil layer in the zone of influence of the loaded foundation.

Breadth of the influence zone at the mid-plane of the compressible layer, of thickness H = (B + H/2).

In case of a rectangular or square footing a similar dispersion of load takes place along the other side of footing.

3. SAMPLE CALCULATION

Table A Calculation of Net Safe Bearing Capacity

			700				2/			
Shape	e of		F.S.=	γ, t/n	$m^3 =$	= C	φ =	Nc =	Nq =	$N_{\gamma} =$
Found	lation:	STRIP	3		1.94	1.8	2.4	5.74	1.24	0.19
			dq =			I	II	III		
D [m]	B [m]	dc	dg	С	q	Term	Term	Term	qnf	qnf /F
2	2	1.21	1	1.8	1.94	12.48	0.47	0.18	13.13	4.38

The net safe bearing capacity for the footing is to be seen in the last column of the above Table A. This value is checked for settlement as shown below.

Table B <u>Calculation of Settlement</u>

m =	0.298	Gs =	2.71	eo =	0.8076	Cc =	0.151	Dw =	0
		qnf					S	λs	
Depth	Width	/F	ро	Н	D p	log (1+	[mm]	mm	Remarks
D [m]	B [m]	t/m ²	t/m ²	m	t/m ²	Dp/po)	mm	mm	
2.0	2.0	4.4	3.3	3.0	2.5	0.2	61.5	49.2	OK

Hence the **net allowable bearing pressure** for a strip footing of width 2.0 m and depth 2.0 m below ground level will be 4.4 t/m².

The calculations for footings of other sizes and depths are done similarly

area of ba area of ann area of ster area of cyl. over depth (L over depth (L	n = pi D(L- 1.5 (n-1	pi Du 1.5(n -0.55) to L	Л р .5)	4.0 4.0 6.0 8.0 8.0 10.0 10.0 10.0 As m ² 2.32 1.73 3.89 3.30	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.10 0.25 0.25	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 2 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1	3.4 4.0 5.6 6.7 8.5 10.1 10.9 12.9 ca t/m ² 1.90 1.90 2.70 2.70	ca' t/m ²
area of ba area of ann area of ster area of cyl. over depth (Ler depth 0 -(Ler depth 0 -(Ler depth 0 -50 0.50 0.50 0.50 0.50 0.50	se of pile = ular ring = n = pi D(L- 1.5 (n-1 bet.bulbs= -0.55) to (L+ 0.45) -0.55- 1.5 Du) to (L 1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1 2 1 2 1	pi D ² /4 pi Du ² /4 - A) Du-0.55-0 pi Du 1.5(n -0.55) to L Ap m ² 0.05 0.05 0.05	x shaft dia Aa m² 0.15 0.15 0.15 0.15	6.0 6.0 8.0 8.0 10.0 10.0 10.0 As m ² 2.32 1.73 3.89 3.30	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.18	0.50 0.50 0.50 0.50 0.50 0.50 cp t/m ² 3.60 3.60 5.00	1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1	5.6 6.7 8.5 10.1 10.9 12.9 ca t/m ² 1.90 1.90 2.70	t/m²
area of ann area of ster area of cyl. over depth (Lover depth 0 -(Lover depth	ular ring = n = pi D(L- 1.5 (n-1 bet.bulbs= -0.55) to (L+ 0.45) -0.55- 1.5 Du) to (L 1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1 2 1 2 1	pi Du ² /4 - A) Du-0.55-0. pi Du 1.5(n -0.55) to L Ap m ² 0.05 0.05 0.05	x shaft dia Aa m² 0.15 0.15 0.15 0.15	6.0 8.0 8.0 10.0 10.0 4s m ² 2.32 1.73 3.89 3.30	0.25 0.25 0.25 0.25 0.25 0.25 0.25 As' m ² 0.00 1.18 0.00	0.50 0.50 0.50 0.50 0.50 0.50 cp t/m ² 3.60 3.60 5.00	2 1 2 1 2 1 2 c'a t/m ² 3.60 3.60 5.00	6.7 8.5 10.1 10.9 12.9 ca t/m ² 1.90 1.90 2.70	t/m²
area of ster area of cyl. over depth (I over depth 0 -(L- 2.50 Du m 0.50 0.50 0.50 0.50 0.50	n = pi D(L- 1.5 (n-1 bet.bulbs= -0.55) to (L+ 0.45) -0.55- 1.5 Du) to (L 1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1 2 1 2	Du-0.55-0. pi Du 1.5(n -0.55) to L Ap m² 0.05 0.05 0.05 0.05	x shaft dia Aa m² 0.15 0.15 0.15 0.15	8.0 8.0 10.0 10.0 4s m ² 2.32 1.73 3.89 3.30	0.25 0.25 0.25 0.25 0.25 As' m ² 0.00 1.18 0.00	0.50 0.50 0.50 0.50 0.50 cp t/m ² 3.60 3.60 5.00	1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 1 1	8.5 10.1 10.9 12.9 ca t/m ² 1.90 1.90 2.70	t/m²
er area of cyl. over depth (I over depth (Ler depth 0 -(Ler depth 0 -(Ler depth 0 - 0.50	bet.bulbs= -0.55) to (L+ 0.45) -0.55- 1.5 Du) to (L 1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1	Ap m ² 0.05 0.05 0.05 0.05	x shaft dia Aa m² 0.15 0.15 0.15 0.15	8.0 10.0 10.0 10.0 As m ² 2.32 1.73 3.89 3.30	0.25 0.25 0.25 0.25 As' m ² 0.00 1.18 0.00	0.50 0.50 0.50 cp t/m ² 3.60 3.60 5.00	2 1 2 2 c'a t/m² 3.60 3.60 5.00	10.1 10.9 12.9 ca t/m ² 1.90 1.90 2.70	t/m²
over depth (I over depth (Ler depth 0 -(L- 2.50 Du m 0.50 0.50 0.50 0.50 0.50	-0.55) to (L+ 0.45) -0.55- 1.5 Du) to (L 1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1 2 1 2 1	-0.55) to L 2 Ap m ² 0.05 0.05 0.05 0.05	x shaft dia Aa m² 0.15 0.15 0.15 0.15	10.0 10.0 10.0 As m ² 2.32 1.73 3.89 3.30	0.25 0.25 As' m ² 0.00 1.18 0.00	0.50 0.50 cp t/m ² 3.60 3.60 5.00	1 2 c'a t/m ² 3.60 3.60 5.00	10.9 12.9 ca t/m ² 1.90 1.90 2.70	t/m²
over depth (Ler depth 0 -(Ler	-0.55- 1.5 Du) to (L 1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1 2 1 2 1	-0.55) to L 2 Ap m ² 0.05 0.05 0.05 0.05	Aa m ² 0.15 0.15 0.15	As m ² 2.32 1.73 3.89 3.30	0.25 As' m² 0.00 1.18 0.00	cp t/m ² 3.60 3.60 5.00	2 c'a t/m² 3.60 3.60 5.00	ca t/m ² 1.90 1.90 2.70	t/m²
over depth (Ler depth 0 -(Ler	-0.55- 1.5 Du) to (L 1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1 2 1 2 1	-0.55) to L 2 Ap m ² 0.05 0.05 0.05 0.05	Aa m ² 0.15 0.15 0.15	As m ² 2.32 1.73 3.89 3.30	As' m ² 0.00 1.18 0.00	cp t/m ² 3.60 3.60 5.00	c'a t/m² 3.60 3.60 5.00	ca t/m ² 1.90 1.90 2.70	t/m²
2.50 Du m 0.50 0.50 0.50 0.50 0.50	1.5 Du) & (L-0.55) Bulb dia = No.of bulbs, n= 1 2 1 2 1	to L Ap m² 0.05 0.05 0.05 0.05	Aa m ² 0.15 0.15 0.15	m ² 2.32 1.73 3.89 3.30	m ² 0.00 1.18 0.00	t/m ² 3.60 3.60 5.00	t/m ² 3.60 3.60 5.00	t/m ² 1.90 1.90 2.70	t/m²
2.50 Du m 0.50 0.50 0.50 0.50	Bulb dia = No.of bulbs, n=	Ap m ² 0.05 0.05 0.05 0.05	Aa m ² 0.15 0.15 0.15	m ² 2.32 1.73 3.89 3.30	m ² 0.00 1.18 0.00	t/m ² 3.60 3.60 5.00	t/m ² 3.60 3.60 5.00	t/m ² 1.90 1.90 2.70	t/m²
Du m 0.50 0.50 0.50 0.50 0.50	No.of bulbs, n= 1 2 1 2 1 1 2	Ap m ² 0.05 0.05 0.05 0.05	Aa m ² 0.15 0.15 0.15	m ² 2.32 1.73 3.89 3.30	m ² 0.00 1.18 0.00	t/m ² 3.60 3.60 5.00	t/m ² 3.60 3.60 5.00	t/m ² 1.90 1.90 2.70	t/m²
Du m 0.50 0.50 0.50 0.50 0.50	1 2 1 2 2	Ap m ² 0.05 0.05 0.05 0.05	Aa m ² 0.15 0.15 0.15	m ² 2.32 1.73 3.89 3.30	m ² 0.00 1.18 0.00	t/m ² 3.60 3.60 5.00	t/m ² 3.60 3.60 5.00	t/m ² 1.90 1.90 2.70	t/m²
m 0.50 0.50 0.50 0.50 0.50	1 2 1 2 2	m ² 0.05 0.05 0.05 0.05	m ² 0.15 0.15 0.15 0.15	m ² 2.32 1.73 3.89 3.30	m ² 0.00 1.18 0.00	t/m ² 3.60 3.60 5.00	t/m ² 3.60 3.60 5.00	t/m ² 1.90 1.90 2.70	t/m²
0.50 0.50 0.50 0.50 0.50	2 1 2 1	0.05 0.05 0.05 0.05	0.15 0.15 0.15 0.15	2.32 1.73 3.89 3.30	0.00 1.18 0.00	3.60 3.60 5.00	3.60 3.60 5.00	1.90 1.90 2.70	1.80
0.50 0.50 0.50 0.50	2 1 2 1	0.05 0.05 0.05	0.15 0.15 0.15	1.73 3.89 3.30	1.18 0.00	3.60 5.00	3.60 5.00	1.90 2.70	
0.50 0.50 0.50	1 2 1	0.05 0.05	0.15 0.15	3.89 3.30	0.00	5.00	5.00	2.70	
0.50 0.50	2 1	0.05	0.15	3.30					0.0
0.50	1				1.18	5.00	5.00	2 70	0.0
		0.05	0.15			0.00	5.00	2.10	3.0
0.50	2		0.15	5.46	0.00	6.10	6.10	3.82	
	_	0.05	0.15	4.87	1.18	6.10	6.10	3.82	4.40
0.50	1	0.05	0.15	7.03	0.00	7.00	7.00	4.25	
0.50	2	0.05	0.15	6.44	1.18	7.00	7.00	4.25	5.30
Du	No.of bulbs, n=	ApNc cp	AaNc ca'	[0.5]As ca	As' ca'	Qu	Qs		
m		t	t	t	t	t	t		
0.50	1	1.59	4.77	2.20	0.00	8.56	3.4		
0.50	2	1.59	4.77	1.64	2.12	10.12	4.0		
0.50	1	2.21	6.63	5.25	0.00	14.08	5.6		
0.50	2	2.21	6.63	4.45	3.53	16.82	6.7		
0.50	1	2.69	8.08	10.43	0.00	21.21	8.5		
0.50	2	2.69	8.08	9.30	5.18	25.26	10.1		
0.50	1	3.09	9.28	14.94	0.00	27.31	10.9		
0.50	2	3.09	9.28	13.69	6.24	32.30	12.9		
	0.50 0.50 0.50 0.50 0.50 0.50	0.50 2 0.50 1 0.50 2 0.50 1 0.50 2 0.50 1 0.50 1	0.50 2 1.59 0.50 1 2.21 0.50 2 2.21 0.50 1 2.69 0.50 2 2.69 0.50 1 3.09	0.50 2 1.59 4.77 0.50 1 2.21 6.63 0.50 2 2.21 6.63 0.50 1 2.69 8.08 0.50 2 2.69 8.08 0.50 1 3.09 9.28	0.50 2 1.59 4.77 1.64 0.50 1 2.21 6.63 5.25 0.50 2 2.21 6.63 4.45 0.50 1 2.69 8.08 10.43 0.50 2 2.69 8.08 9.30 0.50 1 3.09 9.28 14.94	0.50 2 1.59 4.77 1.64 2.12 0.50 1 2.21 6.63 5.25 0.00 0.50 2 2.21 6.63 4.45 3.53 0.50 1 2.69 8.08 10.43 0.00 0.50 2 2.69 8.08 9.30 5.18 0.50 1 3.09 9.28 14.94 0.00	0.50 2 1.59 4.77 1.64 2.12 10.12 0.50 1 2.21 6.63 5.25 0.00 14.08 0.50 2 2.21 6.63 4.45 3.53 16.82 0.50 1 2.69 8.08 10.43 0.00 21.21 0.50 2 2.69 8.08 9.30 5.18 25.26 0.50 1 3.09 9.28 14.94 0.00 27.31	0.50 2 1.59 4.77 1.64 2.12 10.12 4.0 0.50 1 2.21 6.63 5.25 0.00 14.08 5.6 0.50 2 2.21 6.63 4.45 3.53 16.82 6.7 0.50 1 2.69 8.08 10.43 0.00 21.21 8.5 0.50 2 2.69 8.08 9.30 5.18 25.26 10.1 0.50 1 3.09 9.28 14.94 0.00 27.31 10.9	0.50 2 1.59 4.77 1.64 2.12 10.12 4.0 0.50 1 2.21 6.63 5.25 0.00 14.08 5.6 0.50 2 2.21 6.63 4.45 3.53 16.82 6.7 0.50 1 2.69 8.08 10.43 0.00 21.21 8.5 0.50 2 2.69 8.08 9.30 5.18 25.26 10.1 0.50 1 3.09 9.28 14.94 0.00 27.31 10.9

बिहार राज्य शैक्षणिक आधारभूत संरचना विकास निगम लिमिटेड BIHAR STATE EDUCATIONAL INFRASTRUCTURE DEVELOPMENT CORPORATION LTD.

(A Govt. of Bihar Undertaking) ISO 9001:14001; OHSAS 18001

Shiksha Bhawan, Bihar Rashtrabhasha Parishad Campus, Acharya Shivpujan Sahay Path, Saidpur, Patna - 800 004 Tel. No.: 0612 - 2660850 • Fax No.: 0612 - 2660256

E-mail: bseidc@gmail.com • Website: http://www.bseidc.in • CIN: U80301BR2010SGC015859

पत्रांक:- BSEIDC/TECH/1960/2018 - \369

दिनांक 02.03-2021

प्रेषक.

मुख्य अभियंता BSEIDC Ltd, Patna

सेवा में,

बिहार फाउंडेशन कंसल्टेन्ट गंगा दर्शन अपार्टमेंट फ्लैट न०-403 सदाकत आश्रम के पश्चिम, पटना- 800010

विषय:- निर्माण स्थल के मिट्टी जाँच हेतु।

प्रसंग:- भवन निर्माण विभाग का पत्र संख्या-2030, दिनांक-21.04.2006

महाशय,

बिहार राज्य शैक्षणिक आधारभूत संरचना विकास निगम लि० के अधीन "जहानाबाद, अरवल, नवादा, रोहतास, कैमुर, मुंगेर, सुपौल, वैशाली, सारण, भागलपुर और दरमंगा " में विभिन्न +2 स्तरीय विद्यालय भवनों का निर्माण कार्य प्रस्तावित है। इन भवनों के निर्माण स्थलों पर मिट्टी की जाँच कराना है, जिसकी सूची (कम सं0–1 से 23 एवं 25 से 26 कुल 25)संलग्न है।

अतः अनुरोध है कि उपरोक्त स्थलों का तीन—तीन बिन्दुओं पर 10.5 मीटर गहराई तक प्रत्येक 1.5 मीटर गहराई में मिट्टी का नमूना संग्रह कर प्रतिवेदन समर्पित करें। साथ ही विहित प्रपत्र में मिट्टी के भार वहन क्षमता की गणना (Isolated एवं Pile Foundation के लिए अलग—अलग) भी Hard Copy एवं Soft Copy में समर्पित करें।

इस जाँच कार्य को इस तरह संपादित करें कि ट्रान्सपोर्टेशन एवं मोबलाईजेशन खर्च कम से कम हो। कार्य स्थलों पर सम्पर्क व्यक्ति, कार्य से संबंधित प्राचार्य / संबंधित कार्यपालक अभियंता रहेंगे।

मुख्य अभियता

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit : Baidyanath Foundation Consultants Pvt. Ltd.]

	Biha	r State Education	onal Infrastrucure Develor	oment Corporation	ı Ltd.
			List of Schools for Soil Test	· ·	
Sl.No.	District	Block	Name of Vidyalay	Letter no. & Date of A/A	Name & Mobile no of Executive Engineer
1	Jehanabad	Ratni Faridpur	High School, Rakasiya Dyaichak	11/भवन 08-	Sri Binod Ranjan, 9661863636
2	Arwal	Kurtha	Govt. High School, Kurtha	02/2018-176 dt. 26.02.2020	Sri Binod Ranjan, 9661863636
3	Nawada	Hisua	High School, Pacharha		Sri Binod Ranjan, 9661863636
4	Rohtas	Chenari	Gangotri Project High School, Chenari	11/वि11-48/2018 - 207 dt. 18.03.2020	Sri Ranvijay Kumar Sinha 9934961293
5	Kalmur	Durgawati	High School, Dhanechha		Sri Ranvijay Kumar Sinha 9934961293
6	Kaimur	Durgawati	Shatruharan High School, Kalyanpur		Sri Ranvijay Kumar Sinha 9934961293
7	Kaimur	Ramgarh	High School, Ramgarh		Sri Ranvijay Kumar Sinha 9934961293
8	Kalmur	Ramgarh	High School Rajendranagar, Deohaliya	11/ੰਸਰਜ 08-01/2017- 217 dt. 20.03.2020	Sri Ranvijay Kumar Sinha 9934961293
9	Kaimur	Nuaon	Ramayan singh High School, Banka Bahuaara		Sri Ranvijay Kumar Sinha 9934961293
. 10	Kaimur	Nuaon	Sarvodya High School, Guriyan		Sri Ranvijay Kumar Sinha 9934961293
11	Supaul	Chhatapur	Govt. Lalit Narayan Vidya Mandir, Balua Bazar		Srj Satish Prasad, 9523226037
12	Munger	Dharhara	Bapu Peaveshika High School, Sundarpur		Sri Surendra Kumar, 7903912972
13	Munger	Khargpur	Gandhi Memorial High School, Muzaffarganj	11/वि11-05/2019 - 219 dt. 20.03.2020 and 11/वि11-	Sri Surendra Kumar, 7903912972
14	Munger	Khargpur	Inter High School, Lohachi	05/2019 -118 dt. 18.02.2021	Sri Surendra Kumar, 7903912972
15	Munger	Jamalpur	Sardar Patel High School, Hanspuri		Sri Surendra Kumar, 7903912972

Bihar Foundation Consultants 403, Ganga Darshan Apartment, Patna-10 [A Unit: Baidyanath Foundation Consultants Pvt. Ltd.]